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In a recent paper [1], a method based on the cyclic power spectrum (CPS) was presented to
detect mechanical signals with periodic amplitude modulation, such as those characterising faulty
states in rolling element bearings. The method was claimed ‘‘to obtain more information than
other conventional methods, such as the frequency domain and the envelope detection’’. Actually,
this conclusion is not new and it is only partly true. In order to explain why this assertion should
be revised, we first prove that the theoretical argument by which the authors of Ref. [1] arrive at
advocating the use of the CPS is wrong; we then give one acceptable reason why the CPS is a
relevant tool for analysing rolling element bearing signals; we finally refute the authors’ claim that
the CPS is a more effective tool than envelope analysis and we prove why.
1. Terminology

The aim of this first section is to introduce the notation used in the following discussion and
which is consistent with that of Ref. [1]. Let us refer to first-order cyclostationary (CS1) signals as
to those signals whose ensemble average mxðtÞ ¼ EfxðtÞg has a Fourier series expansion mxðtÞ ¼P
ai2A

mai
x e

j2pai t; where A is a countable set of cyclic frequencies. Similarly, let us refer to second-order
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cyclostationary (CS2) signals as to those signals whose instantaneous autocorrelation function

Rxðt; tÞ ¼ EfxðtÞxðt � tÞ�g has a Fourier series expansion Rxðt; tÞ ¼
P
ai2A

Rai
x ðtÞe

j2pai t; where the

Fourier coefficients Rai
x ðtÞ are known as the cyclic autocorrelation functions. The Fourier

transform of the cyclic autocorrelation function at a given cyclic frequency ai then defines the

cyclic power spectrum (CPS): Sai
x ðf Þ ¼ F Rai

x ðtÞ
� �

: The family of CPS’s indexed by all ai 2 A is

related to the spectral correlation (SC)—i.e. the double Fourier transform of Rxðt; tÞ with respect
to t and t—in the following way:

Sxða; f Þ ¼
ZZ

R2

Rxðt; tÞe�j2pf te�j2patdtdt ¼
X
ai2A

Sai
x ðf Þdða� aiÞ:

Note that the SC is a surface-wise density (power/Hz2) whereas the CPS is a line-wise density
(power/Hz). In other words the 2-dimensional SC Sx(a, f) of a CS2 signal is made of a series of
slices parallel to the f-axis, each of which indexed by a given cyclic frequency ai and having its
shape specified by the 1-dimensional CPS Sai

x ðf Þ: Because the SC and the CPS of a cyclostationary

signal are so closely related and actually display the same spectral information, we shall
indifferently refer to one or the other in the following discussion.

2. Quasi-periodic signals should not be analysed with the CPS

The authors of Ref. [1] proposed to model the rolling element bearing signal by a periodically
modulated sine wave of the type

xðtÞ ¼ b0 þ
XN

i¼1

bi cosð2pf mi
t þ fiÞ

 !
cosð2pf 0tÞ: (1)

It must be recognised that the so-defined x(t) is a perfectly deterministic and quasi-periodic signal,
whose SC is simply obtained from

Sxða; f Þ ¼
X
a

Sai
x ðf Þdða� aiÞ ¼ X ðf þ aÞX �ðf Þ (2)

where X(f) is the Fourier transform of x(t). This is illustrated in Fig. 1. Eq. (2) and Fig. 1 clearly
evidence that, in the case of a quasi-periodic signal, the SC is constructed from interference terms
between the peaks of X(f). In other words, for a quasi-periodic signal, the SC and a fortiori the
CPS contain no more information than the Fourier transform X(f). Indeed, computing a long
Fourier transform on the data would perform just as well—if not better—than the CPS for
detecting a quasi-periodic signal buried in additive noise. In brief, the reason why the CPS is
inappropriate here is because the signal defined by Eq. (1) is simply CS1 and therefore does not
require second-order tools.

3. The reason why the CPS is justified for analysing rolling element bearing signals

As a matter of fact, the CPS was originally introduced for analysing purely random signals with
a cyclostationary behaviour, i.e. signals for which the existence of a Fourier series expansion of
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Fig. 1. SC magnitude of the signal x(t) defined by Eq. (1). It consists solely of interferences between X(f)* and X ðf � aÞ;
whenever a ¼ ai 2 A: This yields a spectral structure both discrete in the f and in the a frequency variables, materialised

by the black dots in the above picture. The parallel diagonal lines show the directions spanned by the family of CPS’s

Sai
x ðf Þ; ai 2 A:
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their autocorrelation function is not solely due to interferences from deterministic quasi-periodic
components. Such signals are said to be purely second-order cyclostationary signals and are
radically different from quasi-periodic signals which are CS1. Differentiating between CS1 and
CS2 signals is of fundamental importance, since the processing tools dedicated to the former are
not the same as those dedicated to the latter. Whereas the Fourier transform or Fourier series
works perfectly for detecting CS1 characteristics, they are unable to recognise CS2 signals whose
spectra are continuous functions of frequency f. Second-order tools such as the CPS are necessary
to detect the hidden periodicities of purely CS2 signals.
Concerning rolling element bearing signals, it actually turns out that they are well modelled by

CS2 signals [2–5], but this requires replacing the quasi-periodic model of Eq. (1) by a more
realistic stochastic model:

xðtÞ ¼
X1

i¼�1

Aisðt � TiÞ; (3)

where s(t-Ti) is the waveform generated by the i-th impact at the time Ti and Ai its amplitude
which accounts for possible periodic modulations. Due to the presence of various sources of
randomness (in particular random slips of the cage) in the bearings, the variables Ti and Ai are
random variables in general. It has been shown in Refs. [3–5] that the signal xðtÞ of Eq. (3)
contains a negligible quasi-periodic part at high frequencies, so that its high-pass-filtered version
(or typically a band-pass-filtered version around a high-frequency resonance) is purely CS2. This
property then justifies the analysis by means of the SC or CPS, and theoretically yields a SC which
is continuous in the f-frequency variable, and discrete in the a-frequency variable. A typical
example is provided in Fig. 2.
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Fig. 2. The SC magnitude of a rolling element bearing signal with an inner race fault. The signature of the fault comes

out in the frequency range [10;20] kHz, at the discrete frequencies ai=i  71Hz, i=1,y,4 (ball-pass frequencies on the

inner race). Note the 10Hz modulation due to the shaft rotation, giving discrete frequencies at ai � 10 Hz. Note also

that, as expected from a purely CS2 signal, the SC is a continuous function in the f-frequency variable whereas discrete

in the a-frequency variable. The arrows point at the CPS’s indexed by the cyclic frequencies of the fault.
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Note that Refs. [2–4], at least, were published well before Ref. [1].
Note also that our original model in Ref. [3] claimed that bearing signals were CS2, whereas the

more refined models in Refs. [4–5] demonstrate that they are not strictly CS2, but can usefully be
treated as such, since the low order ‘‘harmonics’’ in the a (cyclic frequency) direction are very
narrow band even if not strictly discrete.
4. The relationship between the CPS and the envelope spectrum

The authors of Ref. [1] claimed that the CPS performs better than envelope analysis. This
may be true for the wavelet envelope as tested in their paper, but not for the squared-envelope
obtained from squaring the modulus of the (analytic) band-pass-filtered signal. Indeed, a
close relationship exists between the CPS and the squared-envelope spectrum, which has been
proved in Refs. [2,3]. Let us denote by ~xðtÞ the filtered version of signal x(t) in the frequency band
[f1;f2]—for instance around a high-frequency resonance where the signal-to-noise is maximised.
Then the following holds trueZ f 2

f 1

Sai
x ðf Þ df ¼ lim

T!1

1

T

Z T=2

�T=2
j ~xðtÞj2e�j2pai t dt (4)



ARTICLE IN PRESS

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

α [Hz]

S
qu

ar
ed

-e
nv

el
op

e 
sp

ec
tr

um
71 Hz 

81 Hz 61 Hz 

142 Hz 

213 Hz 

284 Hz 

Fig. 3. The squared-envelope spectrum as obtained from projecting the 2D density of Fig. 2 on the a-frequency axis. In

this particular case, the information is even more readable on the squared-envelope spectrum than on the SC.
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provided that ai � f 2 � f 1 (this condition is always satisfied when dealing with rolling element
bearings; for illustration, in the above example the largest scrutinised cyclic frequency ai ¼ 355 Hz is
about two orders of magnitude smaller than f2�f1E10kHz). Eq. (4) clearly proves that the squared-
envelope spectrum contains the same information as the CPS does. It is seen that the squared-
envelope spectrum can be interpreted as the projection of the CPS on the a-frequency axis. This
projection usually summarises the CPS in a very efficient manner, as illustrated in Fig. 3.
In Ref. [6] it was shown that in the majority of cases, the squared-envelope spectrum is superior

to the normal envelope spectrum.
5. Conclusion

We have shown that the use of the CPS for analysing rolling element bearing signals cannot be
justified from a quasi-periodic model of the vibration signals, as done in Ref. [1]. Indeed, the
correct justification of using the CPS is based on first demonstrating that rolling element bearing
signals can be approximated as purely second-order cyclostationary [2–5]. Differentiating between
quasi-periodic signals and purely second-order random cyclostationary signals is essential, since
the two types of signals require different processing tools. These aspects are discussed in depth in
Ref. [7].
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We have also pointed out that the CPS is closely related to the squared-envelope spectrum,
which means that there is no rational reason why the latter should not be as effective as the
former. The effectiveness of the envelope spectrum (frequently referred to as the High Frequency
Resonance Technique) has actually been reported in many instances, at least for detecting
incipient and localised faults. From our experience, there are many examples where the
information displayed by the squared-envelope spectrum is more readable than the information
displayed by the CPS. A special situation where the CPS was found more advantageous than the
envelope spectrum has been discussed in Refs. [2,3], for differentiating the spectral signatures of
distributed bearing faults from the spectral signatures of gear faults.
References

[1] Li Li, Liangsheng Qu, Cyclic statistics in rolling bearing diagnosis, Journal of Sound and Vibration 267 (2) (2003)

253–265.

[2] R.B. Randall, J. Antoni, Separation of gear and bearing fault signals in helicopter gearboxes, Fourth International

Conference on Acoustical and Vibratory Surveillance Methods and Diagnosis Techniques, 16–18 October, Compiègne,
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